Numerical simulation guides

Computing chemical droplet neurons learning and extra science citations? Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins.

Diabetes is a major and growing public health challenge which threatens to overwhelm medical services in the future. Type 2 diabetes confers significant morbidity and mortality, most notably with target organ damage to the eyes, kidneys, nerves and heart. The magnitude of cardiovascular risk associated with diabetes is best illustrated by its position as a coronary heart disease risk equivalent. Complications related to neuropathy are also vast, often working in concert with vascular abnormalities and resulting in serious clinical consequences such as foot ulceration. Increased understanding of the natural history of this disorder has generated the potential to intervene and halt pathological progression before overt disease ensues, after which point management becomes increasingly challenging. The concept of prediabetes as a formal diagnosis has begun to be translated from the research setting to clinical practice.

Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC), monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function. Discover more info on Mitotic checkpoint regulation with Bashar Ibrahim.

The orientation of the mitotic spindle with respect to the polarity axis is crucial for the accuracy of asymmetric cell division. In budding yeast, a surveillance mechanism called the spindle position checkpoint (SPOC) prevents exit from mitosis when the mitotic spindle fails to align along the mother-to-daughter polarity axis. SPOC arrest relies upon inhibition of the GTPase Tem1 by the GTPase-activating protein (GAP) complex Bfa1–Bub2. Importantly, reactions signaling mitotic exit take place at yeast centrosomes (named spindle pole bodies, SPBs) and the GAP complex also promotes SPB localization of Tem1. Yet, whether the regulation of Tem1 by Bfa1–Bub2 takes place only at the SPBs remains elusive. Here, we present a quantitative analysis of Bfa1–Bub2 and Tem1 localization at the SPBs.

Categories